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Abstract
The relative intensities in two polarization directions of the incident radiation,
and the line strengths of the (7F0)�1g → (5D2)�5g, �3g transitions of Eu3+

in the cubic crystal host Cs2NaYF6 have been calculated using the third-
order Judd–Pooler (JP) formalism. The calculated relative intensities are
in semiquantitative agreement with experiment, and in good agreement with
the results of the direct calculation. The ratio of the line strengths of the
�1g → �3g transition from the JP and direct calculations is similar for the
cases when the initial and final states are assumed to be pure to that when
the multiplets with spin–orbit admixtures are included in the initial and final
states. The ratio assumes the correct order of magnitude when the intermediate-
state barycentre energy is lowered from the formal Judd–Ofelt–Axe value to a
physically intuitive one.

1. Introduction

The theory of two-photon transitions was formulated by Axe [1] using the conventional Judd–
Ofelt (JO) closure approximation [2, 3] in second-order perturbation theory, by coupling the two
electric dipole operators into an effective operator acting between same-parity initial and final
states. Further developments were initiated by Judd and Pooler (JP) [4] who used second-
quantization techniques and constructed the transition operator for a two-photon process
connecting states of different spin multiplicity. Later, Downer [5, 6] extended JP theory
to higher-order analysis by including the crystal field interaction acting on the intermediate 5d
electronic states to explain the two-photon transitions forbidden by SL J selection rules.

Recently, we have theoretically investigated the transition line strengths and relative
intensities of the (7F0)�1g → (5D2)�5g, �3g and (7F0)�1g → (5L6)�1g, a �5g two-photon
transitions of Eu3+ in the cubic Cs2NaYF6 host [7]. In the direct evaluation of transition line
strengths of these four transitions, we found that, for (7F0)�1g → (5D2)�5g, �3g, the calculated
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relative intensities of the two transitions were in reasonable agreement with experiment, and
the neglect of J -mixing in the initial state had only a small effect upon the calculation. For the
(7F0)�1g → (5L6)�1g, �5g transitions, satisfactory agreement of calculation with experiment
was obtained by using 4f5 crystal field states instead of the 4f5 free-ion states in constructing
the intermediate states.

Our intention in making the present study was to show that TPA intensity calculations for
lanthanide ions doped into cubic hosts are at least semiquantitative in accuracy. It is also of
interest to undertake a calculation of transition intensities using the JO closure approximation
in order to compare both the calculated relative and absolute intensities with those of direct
calculations. It is noted that the results calculated using the closure approach have usually
only been used for the investigation of relative and not absolute intensities. In the present
study, a calculation has been performed for the (7F0)�1g → (5D2)�5g, �3g two-photon
transitions of Eu3+ in the Cs2NaYF6 host crystal, using the JP third-order formalism with
the JO closure approximation. Since for these two transitions results of experiment [8] and
direct calculation [7] are both available, the JP-calculated relative transition intensities are
compared with those from experiment and direct calculation. In particular, by comparison of
absolute intensities for transitions between the closure and direct calculations, the influence of
the barycentre energy of the intermediate configuration upon the absolute transition intensities
can be considered in some detail.

2. Judd–Pooler formalism

For the two-photon transitions under investigation, the matrix element MJ P connecting
the initial state |�iγi 〉 to the final state |� f γ f 〉 can be expressed using the JP third-order
formalism [4]:

MJ P =
∑
m,n

〈�i γi |ε · D|m〉〈m|HSO|n〉〈n|ε · D|� f γ f 〉
�Em �En

, (1)

where HSO is the spin–orbit operator, and the summation is over all the intermediate states
|m〉 and |n〉.

The TPA transition line strength can be expressed as

S�i →� f =
∑
γi ,γ f

|M�i γi →� f γ f |2. (2)

To simplify the calculation, JP applied the JO closure approximation twice and coupled
the two electric dipole operators and spin–orbit operator into a single effective operator Hef f .
The matrix element of equation (1) then becomes

(�E−1
fd )2〈�iγi |Hef f |� f γ f 〉, (3)

where �Efd is the energy separation between the barycentres of the intermediate and ground
configurations, but is usually taken as the gap from the lowest state of the ground configuration
to the excited configuration barycentre.

Ceulemans and Vandenberghe [9] made some minor changes to the expression for the
effective operator derived by JP. The master expression for the spin–orbit part of the third-
order mechanism consists of three terms, written as [9]

−(2l + 1)(2l ′ + 1)〈nl|r |n′l ′〉2

(
l 1 l ′
0 0 0

)2

�E−2
ll′

×
[
−ξl(l(l + 1)(2l + 1))1/2

∑
t

{
1 l l ′
l 1 t

}
(εε)(0t) · (a+a)(0t)t(a+a)(11)0
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+ ξl(2)−1/2(l(l + 1)(2l + 1))1/2
∑
t,k

{
1 l l ′
l 1 t

}{
t l l
l 1 k

}

× (−1)k+1(2k + 1)1/2(εε)(0t) · (a+a)(1k)t

+ ξl′ (2)−1/2(l ′(l ′ + 1)(2l ′ + 1))1/2
∑
t,k

{ 1 l l ′
1 l l ′
t k 1

}

× (−1)k+1(2k + 1)1/2(εε)(0t) · (a+a)(1k)t

]
, (4)

where l and l ′ refer to the 4f and 5d shells, respectively. The second-quantization operators
a+ and a create and annihilate the 4l + 2 states of an l-electron (l = 3). The transition dipoles
reach intermediate states of l N−1l ′ configurations at an energy distance �Ell′ (l ′ = 2). The
electric vector of the radiation field is written as the tensor quantity ε(01).

Clearly, the first term of equation (4) consists of a simple product of the spin–orbit coupling
operator (a+a)(11)0 acting on the states of the l-shell and the operator (a+a)(0t)t . In the remaining
two terms the spin–orbit coupling operator and the two-photon operator are merged into an
effective operator of the form (a+a)(1k)t . The two labels in the bracket (1k) identify the rank of
the spin and orbit operator, respectively. In this way a two-photon process can link states that
differ by three units of angular momentum, provided that the transition is accompanied by a
�S = 1 spin change. The final term takes into account the effect of spin–orbit coupling in the
l ′-shell. The numerical values of 3- j , 6- j symbols up to a certain rank are available in [10].
All other 3- j , 6- j , and 9- j symbols can be calculated from relations given in [11].

In general, the scalar product of two tensors is defined as [12]

T (t) · U (t) =
∑

m

(−1)m T (t)
m U (t)

−m . (5)

All tensors in equation (4) are expressed as scalar products of an electronic part and a
so-called physical part [13]. This physical part involves the coupling of the two ε-tensors. In
what follows, we will calculate these two parts separately and combine them to yield the total
transition matrix element.

2.1. Electronic part

As described above, the change of electronic state is caused by the one-electron operators
(a+a)(0t)t(a+a)(11)0 and (a+a)(1k)t in equation (4). The matrix elements of these operators
constitute the electronic part of the total transition matrix element. Before considering
these matrix elements in some detail, the actual nature of the ground and final states must
be examined. Quantitative calculations of Eu3+ free-ion energy levels using Reid’s f-shell
empirical programs and the input parameters reported by Thorne [8] indicate that 7F0 and 5D2

are fairly pure Russell–Saunders multiplets. The ground level consists of 93% of 7F0 and some
7% of 5D0. The excited level comprises 5D2 (92%), with small admixtures mainly of 7F2 (3%)
and 5F2 (1%). Possible contributions from these additional multiplet terms will be commented
on later. Here we will restrict the treatment to the unperturbed 7F0 and 5D2 multiplets. In the
f6 configuration there are three 5D states, which are denoted by 5D1, 5D2 and 5D3. Judd [12]
has shown that the lowest in energy of these states can be expressed as linear combinations of
these three 5D basis states:

|5D〉 = −0.607|5D1〉 − 0.196|5D2〉 + 0.77|5D3〉. (6)

In the present section the TP transition rate will be calculated for all three 5D basis states, and
these results will be combined to yield the transition matrix element of the lowest 5D state.
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The (7F0)�1g and (5D2)�5g, �3g wavefunctions under consideration are easily projected
out of the J = 0 and 2 manifolds using the cubic subduction relations. Following Griffith [14],
one has

〈7F0, �1g| = 〈0, 0|
|5D2, �3gθ〉 = |2, 0〉
|5D2, �3gε〉 = 1√

2
|2, 2〉 +

1√
2
|2,−2〉

|5D2, �5g1〉 = |2, 1〉
|5D2, �5g0〉 = 1√

2
|2, 2〉 − 1√

2
|2,−2〉

|5D2, �5g −1〉 = |2,−1〉.

(7)

These expressions allow one to relate the �1g → �3g and �1g → �5g transition matrix
elements M�i γi →� f γ f in equation (2) to the following standard MJ → MJ ′ transition elements
in equation (8). The general form of the one-electron operator matrix element is given by
Judd [12, 15]:

〈l N ηSL J MJ |(a+a)
(κk)t
−m |l Nη′S′L ′ J ′M ′

J 〉 = −(−1)J−MJ

×
(

J t J ′
−MJ −m M ′

J

)
〈l N ηSL J ||W (κk)t ||l N η′S′ L ′ J ′〉

= −(−1)J−MJ

(
J t J ′

−MJ −m M ′
J

)

×
{ S S′ κ

L L ′ k
J J ′ t

}
([J ][J ′][t])1/2〈l N ηSL||W (κk)||l Nη′S′L ′〉, (8)

where (a+a)(κk)t represents the second-quantized form of −W (κk)t , which is a sum of single-
particle operators. As usual, the degeneracy numbers such as 2J + 1 are written as [J ]. η and
η′ stand for any other quantum numbers that are needed when the set SL J MJ fails to define
the states uniquely.

The W (κk) doubly reduced matrix element can be calculated as [12]

〈l N ηSL||W (κk)||l Nη′S′L ′〉 = N{[S][κ][S′][L][k][L ′]}1/2
∑
η̄ S̄ L̄

〈ηSL{|η̄S̄ L̄〉〈η̄ S̄ L̄|}η′S′L ′〉

× (−1)S̄+s+S+κ+L̄+l+L+k

{
S κ S′
s S̄ s

}{
L k L ′
l L̄ l

}
, (9)

where η̄S̄ L̄ is defined as the parent state of the initial and final states, and 〈ηSL{|η̄S̄ L̄〉 and
〈η̄ S̄ L̄|}η′S′ L ′〉 are the fractional parentage coefficients which are available in [16]. For those
W (κk) with κ = 0, the reduced matrix elements can calculated in a alternative way:

〈l N ηSL||W (0k)||l Nη′S′L ′〉 = δSS′[s]−1/2{[S][k]}1/2〈l N ηSL||U k ||l Nη′SL ′〉, (10)

where the reduced matrix elements of unit tensors U k for k = 2, 4, 6 can be found in [16]. In
table 1, the values of the reduced matrix elements, which are calculated from equations (9),
(10) and used in the calculations, are listed.

In working out these expressions, several selection rules become apparent. The orbital
rank k in equation (4) forms a triangle with F and D and thus must be constrained between 1
and 5. The only allowed value of total rank t is 2 since it forms a triangle with J = 0 and
J ′ = 2. Thus, in the second and third terms of equation (4), only k = 1, 2, 3 are allowed with
the spin rank κ = 1. Actually k = 2 is not allowed in the third term. This is because the 9- j
symbol in (4) will vanish unless the sum of all its nine parameters is even.
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Table 1. The doubly reduced matrix element 〈f6 7F||W (κk)|f6η′S′L ′〉 for various |f6η′S′L ′〉 and
(κ, k) used in the calculations.

(κ, k)

η′S′L ′ (0, 2) (1, 1) (1, 2) (1, 3)

7F −4.182 0.0 0.0 0.0
5D1 0.0 −5.476 −0.007 −3.943
5D2 0.0 1.465 4.136 −3.682
5D3 0.0 2.802 −5.948 −3.125

Finally, to evaluate matrix elements of the electronic operator (a+a)(0t)t(a+a)(11)0(t = 2),
which appears in the first part of the master expression, the following relation is used:

〈ψ|(a+a)(0t)t(a+a)(11)0|ψ ′〉 =
∑
ψ ′′

〈ψ|(a+a)(0t)t |ψ ′′〉〈ψ ′′ |(a+a)(11)0|ψ ′〉. (11)

In this equation the only possible intermediate state ψ ′′ between ψ = 7F0 and ψ ′ = 5D2

is the 7F2 state.

2.2. Physical part

The physical part involves only the tensor (εε)(0t). For two photons of the same source, a
vector addition of two electric dipoles yields a totally symmetric (t = 0) and a quadrupolar
term (t = 2). In the case of 7F0 → 5D2 TPA transition, only t = 2 is allowed, as described in
the above section. Then, the tensor (εε)

(02)

0,m is defined as follows:

(εε)
(02)

0,m =
∑

m1,m2

〈1m11m2|112m〉ε(01)

0,m1
ε

(01)

0,m2
. (12)

For the transitions under investigation, m1 and m2 are only allowed to be ±1, since the spectra
were obtained in the polarizations of θ = 0◦ and 45◦ (where θ is the angle between the [100]
crystal axis and the unit electric vector of the excitation beam propagating along the [001]
crystal axis) [8]. Thus, the allowed values of m are 0 and ±2, and the following relations are
used in the calculation:

(εε)
(02)

0,0 = 1√
6
(2ε

(01)

0,0 ε
(01)

0,0 + ε
(01)

0,1 ε
(01)

0,−1 + ε
(01)

0,−1ε
(01)

0,1 )

(εε)
(02)

0,2 = ε
(01)

0,1 ε
(01)

0,1

(εε)
(02)
0,−2 = ε

(01)
0,−1ε

(01)
0,−1.

(13)

Furthermore, from equations (5), (7), and (8), we can see that the final states |5D2, T2 ± 1〉
give no contributions to the 7F0(�1g) → 5D2(�5g) transition matrix element, since m = 0,±2
required that MJ ′ = 0,±2 from MJ = 0.

3. Results and discussion

It is obvious from equation (7) that the matrix elements of (7F0)�1g → (5D2)�5g, �3g

transitions can be easily calculated from combinations of the matrix elements of 〈7F0, 0| →
|5D2, MJ ′ = 0,±2〉 transitions. In addition, there is only one rank of the polarization factors
(εε)

(0t)
0,m (t = 2) in equation (4). In table 2, the matrix elements of 〈7F0, 0| → |5D2, MJ ′ =

0, ±2〉 transitions for various polarizations ε
(01)

0,m1
ε

(01)

0,m2
(m1, m2 = ±1) are given. From this



8682 L Ning et al

Table 2. Matrix elements of 〈7F0, 0| → |5D2, MJ ′ = 0, ±2〉 transitions for various
polarizations ε

(01)
0,m1

ε
(01)
0,m2

(m1, m2 = ±1) expressed in terms of χ (χ = −10−2 × (43.40ξ4f −
7.32ξ5d)〈f|r|d〉2 �E−2

fd , where ξ4f , ξ5d, and �Efd are all in units of cm −1).

(m1, m2)

|5D2, MJ ′ 〉 (1, 1) (1, −1) (−1, 1) (−1, −1)

|5D2, 0〉 0.0
1√
6
χ

1√
6
χ 0.0

|5D2, 2〉 χ 0.0 0.0 0.0
|5D2,−2〉 0.0 0.0 0.0 χ

Table 3. Calculated and observed intensities for the (7F0)�1g → (5D2)�5g, �3g TPA transitions
of Eu3+ doped in the Cs2NaYF6 host lattice.

Calculated Calculated
transition transition Relative intensities

line strengthb line strengthc calc.b, calc.c (obs.a)
Final Transition Energy
state Noa (cm−1)a θ = 0◦ θ = 45◦ θ = 0◦ θ = 45◦ θ = 0◦ θ = 45◦

Ad
�5g 24 21 389 0.0 3.0 0.0 182.5 0.00, 0.00 (0.12) 3.0, 3.17 (9.9)
�3g 25 21 568 4.0 1.0 227.5 57.5 1.00, 1.00 (1.00) 1.00, 1.00 (1.00)

Be �5g 24 21 389 0.0 3.0 0.0 870.0 0.00, 0.00 (0.12) 3.0, 3.08 (9.9)
�3g 25 21 568 4.0 1.0 1130.0 282.5 1.00, 1.00 (1.00) 1.00, 1.00 (1.00)

a Reference [8].
b From this work. The transition line strengths are in units of 7.94 × 1049〈f|r|d〉4 �E−4

fd m4 J−2 in row A and

4.22 × 1044 × (11.72 × 10−3 �E−1
fd − 4.34 × 102 �E−2

fd )2〈f|r|d〉4 m4 J−2 in row B.
c From the direct calculations [7], where the transition line strengths are in units of 2.53 × 1029〈f|r|d〉4 m4 J−2.
d The pure Russell–Saunders multiplets were used for the initial and final states in the calculations.
e The multiplets with spin–orbit admixtures were used for the initial and final states in the calculations.

table, we can calculate the transition line strengths, the polarization dependence, and the relative
intensities of the (7F0)�1g → (5D2)�5g, �3g transitions. The results are listed in row A of
table 3, in which the results from the direct calculations [7] and experimental observations [8]
are also included.

As shown in row A of table 3, the ratio between the TPA intensities of �1g → �5g and
�1g → �3g at θ = 45◦ is calculated to be 3.0, which is almost the same as that from direct
calculations and in qualitative agreement with the experimental result. The calculated intensity
ratios between θ = 0◦ and 45◦ for these two transitions are equal to 0.0 and 4.0 respectively,
which are almost the same as those derived from direct calculation.

It is interesting to compare the transition line strengths calculated from JP formalism with
those from direct calculations. In the following, we choose the �1g → �3g transition at θ = 45◦
for investigation. From JP formalisms, the matrix element of this transition at θ = 45◦ is given
as

MJ P = 1√
6

× 10−2(43.40ξ4f − 7.32ξ5d)〈f |r |d〉2 �E−2
fd (14)

with 〈f |r |d〉 in m; and ξ4f , ξ5d, and �Efd all in cm−1. When employing ξ4f = 1167.69 cm−1 [17]
and ξ5d = 996.00 cm−1 [18], we can express the transition line strength M2

J P (in units of m4 J−2)
as

M2
J P = 7.94 × 1049〈f |r |d〉4 �E−4

fd , (15)



Third-order contributions to the 7F0 → 5D2 two-photon transition of Eu3+ in a cubic lattice 8683

as listed in row A of table 3. The line strength of this transition from the direct calculation can
be derived from table 3, written as (in units of m4 J−2)

M2
D = 57.5 × 2.53 × 1029〈f |r |d〉4 ∼= 1.45 × 1031〈f |r |d〉4. (16)

The ratio R is thus

R =
(

MJ P

MD

)2

= 5.48 × 1018

�E4
fd

. (17)

The ratio is inversely proportional to the fourth power of the energy difference between
the intermediate and ground configurations. The barycentre of the 4f 55d configuration of Eu3+

has been estimated by Dieke and Crosswhite [19] to be approximately 125 000 cm−1. Upon
substitution of this value into the above equation, the ratio R is found to be 0.022. This serious
discrepancy between the results from two methods prompts us to the following discussion.

First, as we have indicated in section 2.1, the energy level calculations reveal that 7F0
and 5D2 show small deviations from being pure Russell–Saunders multiplets, so we have
also performed the calculations with these admixtures taken into account. This gives rise
to complications, since several more second-order and third-order contributions have to be
calculated: namely 7F0 → 7F2, 5D0 → 5D2, and 5D0 → 5F2 in second order, and 5D0 → 7F2

in third order. The formalism in [9] has been used to calculate the second-order contributions,
and for third-order contribution, the method described in the above section has been used.
The calculated results are listed in row B of table 3, from which we can see that the relative
intensities of the two transitions and their polarization dependences are in agreement with
those from direct calculations and experiment. We still choose the �1g → �3g transition, with
θ = 45◦ as an example for investigation; its JP transition matrix element is

MJ P = 1√
6

[−11.72 × 10−3 �E−1
fd + (43.40ξ4f − 7.32ξ5d) �E−2

fd ]〈f |r |d〉2. (18)

The units of the symbols in this equation are the same as those in equation [14]. When
ξ4f = 1167.69 cm−1, ξ5d = 996 cm−1 and �Efd = 125 000 cm−1 are used, the transition line
strength M2

J P is (in units of m4 J−2)

M2
J P = 1.84 × 1030〈f |r |d〉4. (19)

In this case, the transition line strength from the direct calculation [7] is (in units of m4 J−2)

M2
D = 282.5 × 2.53 × 1029〈f |r |d〉4 ∼= 7.15 × 1031〈f |r |d〉4. (20)

which is larger, by a factor of 5, than that calculated from pure Russell–Saunders multiplets for
the initial and final states. However, the ratio R, as defined in equation (17), is calculated to be
0.026, which is almost identical to that from the calculations using the pure Russell–Saunders
multiplets for the initial and final states. Therefore, the disagreement about the ratio R remains
unresolved even when the spin–orbit admixtures of the initial and final states are taken into
consideration.

Second, in the use of the closure approximation, the zeroth-order basis of the intermediate
states is implicit, and all of the intermediate states are assumed to be degenerate. Xia [20]
considered the energy structures of 4fN−1(η̄S̄ L̄) in the intermediate configuration 4fN−15d, and
derived a revised Judd–Ofelt–Axe (JOA) formula, in which a correction factor was introduced
to multiply the matrix elements of the unit tensor operators. In this correction factor, the energy
differences between the weight-averaged level of the 4fN−1(η̄S̄ L̄)5d configuration and that of
the whole 4fN−15d configuration were taken into account. The fractional parentage coefficients
relating 4fN−1(η̄S̄ L̄) to the initial and final states of the transitions are also considered. Using
the revised JOA formula, Xia was able to explain the large differences between the Raman
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scattering intensities of TmPO4 crystal from direct and JOA calculations [21]. The lowest
multiplets of the ground configuration 4f11 were found to be related mainly to the lowest
or very low terms of the intermediate 4f115d configuration, which made the most important
contributions to the Raman scattering intensities of 3H → 3H and 3H → 3F transitions (of the
4f12 configuration).

In the present work, the initial and final states of the TPA transitions arise from the lowest
or next-lowest terms of the ground configuration 4f6, i.e. 7F and 5D of Eu3+. These two terms
are related mainly to the lowest terms of the configuration 4f55d, which can be seen from the
fractional parentage coefficients, in that their common parents in the 4f5 configuration are 6H,
6F, and 6P. Among these three terms, 6H and 6F are more important than 6P, as shown by the
values of the fractional parentage coefficients relating them to 7F and 5D. A quantitative
calculation of the energy levels of the 4f5 configuration using the free-ion parameters of
Sm3+ [17] indicated that the weight-averaged energy of these three terms is about 5000 cm−1

above that of the lowest intermediate 4f55d state.
From this discussion, it seems to us that the approach using the closure approximation will

provide reasonable results when the barycentre energy of the intermediate states is appropriately
lowered from that used in conventional JOA formalism. If we lower this barycentre energy to
70 000 cm−1, according to our energy analysis in which the energy of the lowest intermediate
state is about 65 000 cm−1 [7], then the ratio R of equation (17) will be equal to 0.23. In the
above analysis, the barycentre energy �Efd of 4f55d1 has been used as the denominator of the
third-order formula as in equation (1). This denominator is actually (�Efd − h̄ω), where h̄ω

stands for the incident photon energy, which is about 10 000 cm−1 for the 7F0 → 5D2 TPA
transitions. Hence, we lowered the energy in equation (17) to 60 000 cm−1, and then found that
the ratio R was 0.42. The transition line strength magnitude calculated using the JP formalism
is slightly smaller than that obtained by direct calculation. This small difference may be, at
least in part, due to the fact that in the direct calculations both the spin–orbit interactions of
4f55d and the crystal field interaction of 5d electrons are taken into account, whilst in the JP
formalism used in this work, only the former of the above two interactions was considered.

4. Conclusions

Reid et al [22] have asserted that the direct, many-body perturbative and JP methods of
calculation are equivalent in the calculation of two-photon transition line strengths. The present
study has taken the 7F0 → 5D2 transition of Eu3+ in the cubic host Cs2NaYF6 as a case study.
Although the JP-calculated transition relative intensities are in agreement with those from the
direct calculation, a modification of the formal JOA effective barycentre is required in order
to obtain agreement of the transition line strengths. The agreement of theory with experiment
for the relative intensities of transitions is reasonable.
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